
Quantum Algorithms 1/26/2023

Lecture 2: From Classical to Quantum Computation

Instructor: Dieter van Melkebeek

In this lecture, we discuss what a computational problem is and introduce the circuit family
model of computation which can be used to solve such problems. We go on to show how to track
the state of a computation running in a circuit using the concepts of linear algebra and highlight
the differences in how we represent states and gates in deterministic, probabilistic, and quantum
computation paradigms.

1 Computations

A computational problem can be thought of as a transformation from inputs, x, to outputs, y. This
can be represented using a mathematical relation:

R = {(x, y) ∈ {0, 1}∗ × {0, 1}∗ : y is a valid output on input x}

Note that we use a relation and not a function because it is possible for an input to have multiple
valid outputs.

The solution to such a problem is a physical process (computation) that transforms the state
of the system from an initial state that represents x to a final state that represents y satisfying
(x, y) ∈ R.

There are three phases in a computation:

1. Initialization
Preparing the state of the system to represent x. This is quite trivial in classical computations,
but can be non-trivial when it comes to quantum computations.

2. Sequence of elementary operations
A sequence of simple steps that alter the state of the system to eventually represent a valid
y.

3. Read out
Observing the state of the system and inferring y from it. This step may also be non-trivial
in quantum computations.

There are two requirements for such a physical process to be regarded as a computation:

Locality: The elementary operations act locally. That is to say, the components of the system
that these operations act on must be physically or geometrically near each other.

Finite description: The sequence of operations must follow from a finite description, e.g., the
source code for a program.
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2 Deterministic Computation Models

2.1 Turing Machines

Turing machines are a common model for deterministic computation. They consist of an infinite
tape with symbols on a finite piece of it and a head which can read symbols from the tape and
overwrite the symbol on the tape. The exact details of how Turing machines work is not required
in this course.

Turing machines satisfy both requirements to be considered computational models:

◦ Locality: The elementary operations of a Turing machine are reading the symbol on the tape
where the head is, overwriting the symbol on the tape where the head is, and moving the
head along the tape. The head can only alter the state of the tape in the position it is present
on the tape, thus the operation is local.

◦ Finite description: There are a finite number of control states that affect the behavior of
the Turing machine and a finite number of transitions between these states (encoded in the
transition function).

Church-Turing Thesis Every computation can be simulated on a deterministic Turing machine.

This thesis has been unchallenged to date. It allows you to think of a Turing machine like a program
written in any programming language, i.e., it can be thought of as a classical computer.

This means that any computation that a quantum computer can do, a Turing machine/classical
computer can also do. Equivalently, if a classical computer cannot perform a computation then,
a quantum computer also cannot perform that computation. Quantum computers observe no
advantage with respect to the types of problems that they can solve.

Strong Church-Turing Thesis Running time of a simulating Turing machine is bounded by a
polynomial in number of steps of the simulated computation.

This thesis is unchallenged to date for deterministic computations. However, it may fail for prob-
abilistic computations (but is conjectured to hold true) and quantum computations (this is the
conjecture). The failure of the strong Church-Turing thesis for quantum computers is necessary for
quantum supremacy to be possible.

Probabilistic and quantum variants of Turing machines exist as models for those types compu-
tations. However, quantum Turing machines are cumbersome to deal with. This is because the
infinite tape makes a quantum Turing machine into an open system, which are harder to deal with
than closed system, acting within a bounded space. For this reason we will not use the quantum
Turing machine as our model for quantum computation in this course.

2.2 Circuit Families

Circuits offer an alternative model for deterministic computation. You can think of Boolean logic
circuits as an example of this model.

Every circuit operates on inputs of a fixed length, n. So to solve a computational problem, we
need a family of circuits, one for every possible input size, {Cn}n∈N. Cn is a circuit that operates
on an input of size n.
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The operations/gates in the circuit are local if they act on elements that are physically near
each other. If the elements are not physically near, they can be brought nearer with the help of
SWAP gates. This adds a linear overhead in the run time of the circuit but ensures locality.

A finite description however is not guaranteed by a family of circuits. We can’t have a unique
circuit description for every n if we wish to consider the circuit family a computation. A circuit
family is called “uniform” if there is a Turing machine that, given n, generates a description for
Cn. Since all circuits of a uniform family can be generated with a finite description (the description
of the Turing machine), a uniform family of circuits can be considered as a computational model
as it meets both requirements.

Note that we need to account for the resources (time and space) required both to the generate
the circuit and to run it for an input. The run-time resources usually dominate over the generation-
time resources, so when designing algorithms (circuits) the generation-time resources are usually
overlooked.

Uniform circuit families are equivalent to Turing machines up to polynomial factors in running
time. And so, the strong Church-Turing thesis will hold equally well for uniform circuit families as
Turing machines.

Probabilistic and quantum variants of uniform circuit families also exist. It is only the type of
circuit that changes; the Turing machine that generates the circuits remains deterministic for all
cases.

Uniform quantum circuits are convenient to deal with and we will use them to describe quantum
algorithms in the course.

3 Linear-Algebraic View of Circuit Computations

Recall that computations are transformations from a binary string input to a binary string output.
The state of a circuit can be represented using a string of m ≥ n components that can be in the
state 0 or 1. When the system is initialized, the first n bits are set to match the input string x and
the remaining bits are set to 0.

The elementary operations of a circuit (called gates) act on a constant number of components.
The geometric proximity of the components is usually ignored during algorithm design. As men-
tioned previously, SWAP gates can be used to swap neighboring components when the algorithm
is implemented.

Encoded Input Encoded Output

0 0 ... 0 ...evolves

m

Figure 1: An overview of how the state string evolves in a deterministic computation. First the
state is initialized to hold the input, x, with the remaining bits set to 0. Right before readout, the
state string of the system will have a substring that encodes the output, y, of the computation.

At any point, the state of the system can be described with an m-bit string s. The gates in a
circuit are mappings from one such string to another. Gates only affect a constant-size part of the
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input string since they follow locality. A gate acting on some k ≤ m components/bits maps the
input to an output state differing in only those k positions.

An alternate way of representing the system states is to use 2m-dimensional vectors. If we do
so, the gates can be represented as linear operators acting on these state vectors. We’ll see what
these state vectors and transition matrices look like for deterministic, probabilistic and quantum
computations.

3.1 Deterministic Computation

The state vectors for deterministic computations are binary vectors where exactly one element of
the vector is 1 and the rest are 0.

|ψ〉 =


ψ0

ψ1
...

ψ(2m−1)

 , ψj ∈ {0, 1}

Indexing the elements of the vector starting from 0, allows us to write each index as an m-bit
integer. The state vector corresponding to the state string s is the binary vector where ψs = 1
and all other elements are 0. We denote the vector as |s〉. For example, for m = 2, there are four
possibilities for the state s = s1s2 ∈ {0, 1}2 and the corresponding state vectors:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1


In the state vector representation, the action of a gate can be viewed as a linear transformation

T , i.e., the state |s′〉 after the application of the gate can be written as the matrix-vector product
T |s〉. We refer to T as the transition matrix.

Example 1 (NAND-gate: s2 ← s1 ∧ s2).
The state transitions for the NAND-gate are:

|00〉 7→ |01〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉

The matrix that captures this mapping is

T =


0 0 0 0
1 1 0 0
0 0 0 1
0 0 1 0


Every column of the transition matrix is a valid state vector, i.e., each column has exactly one

1.

Example 2 (XOR-gate: s2 ← s1 ⊕ s2).
The state transitions for the XOR-gate are:
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|00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉

The matrix that captures this mapping is

T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Note that in this transition matrix T not only every column has exactly one 1, but also every

row has exactly one 1. This corresponds to the fact that XOR is a reversible operation. i.e., there
exists a gate corresponding to the transition matrix T−1. In fact, in this example T−1 = T .

Effect when a gate acts on k < m bits. The gate only affects the components on which it
acts. For each fixed setting of other components, the gate performs a linear operation defined by
T , and the overall effect on the system is also a linear operation, which is given by a tensor product
of T and identities.

Example 3 (Bit-flip gate).
Considering a 2-bit system where the bit flip gate is applied to the second bit. The bit flip on a
single bit corresponds to the transformation

|0〉 7→ |1〉 , |1〉 7→ |1〉

with transition matrix

X =

[
0 1
1 0

]
Nothing happens to the first bit, which means that in the 4× 4 transition matrix for the combined
system, the action takes place in the top left 2 × 2 submatrix (corresponding to the setting 0 for
the first bit), and in the bottom right 2 × 2 submatrix (corresponding to the setting 1 for the first
bit). Both submatrices equal X as that is the action on the second bit for each fixed setting of the
first bit. Another way to think about this is that both bits are acted on independently, namely by
the identity I for the first bit, and the bit flip X for the second bit. The transition matrix for the
combined system is given by the tensor product of I and X:

I ⊗X =

[
1 0
0 1

]
⊗X =

[
X 0
0 X

]
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


We can verify that the above matrix induces the correct combined transformation:

|00〉 7→ |01〉 , |01〉 7→ |00〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉

If we consider a bit flip on the first bit instead, we change the order of the tensor product:

X ⊗ I =

[
0 1
1 0

]
⊗ I =

[
0 I
I 0

]
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
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Again, we can verify that this transition matrix induces the correct transformation:

|00〉 7→ |10〉 , |01〉 7→ |11〉 , |10〉 7→ |00〉 , |11〉 7→ |01〉

For more info about how to calculate the tensor products of matrices, you can read up on the
“Kronecker product.”

Summary: In the linear-algebraic view of deterministic computation:

◦ State vectors are vectors with exactly one 1 and remaining 0s.

◦ Transition matrices are matrices in which each column has exactly one 1 and remaining 0s.

3.2 Probabilistic Computation

The elementary operations can now depend on the outcome of “coin tosses.” As such, the state
of the system becomes a random variable. We can write the state as a linear combination or
“superposition” of basis vectors corresponding to all possible deterministic states:

|ψ〉 =
∑

s∈{0,1}m
ps |s〉 =


p0
p1
...

p(2m−1),


where ps = Pr[system in state s].

The phases of the computation are:

1. Initialization: The system is put into the basis state |x0m−n〉, where x is an n-bit input.

2. Sequence of probabilistic gates.

3. Read out: Measure |ψ〉. This collapses the superposition into a basis state |s〉. We obtain
state |s〉 with a probability of ps. The output y is extracted from s.

Because the elements of the vector represent probabilities, ps ∈ [0, 1] and moreover, the proba-
bilities of each possible observation must add up to 1 so,∑

s

ps = 1.

This sum is called the “1-norm” of |ψ〉, and is written:

‖ |ψ〉 ‖1 =
∑
s

|ps|

Since the computation is probabilistic, there is a chance that at the end of the computation, we
will read out a wrong answer y, i.e., (x, y) /∈ R. For probabilistic computations to be meaningful,
the probability of obtaining a correct output y on a valid input x should be sufficiently high. We
impose the following correctness requiremen: For every valid input x,

Pr[(x, y) ∈ R] ≥ 1− ε,

where ε is referred to as the error bound.
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Transition matrices for probabilistic gates

The transition matrices for probabilistic gates observe the following (equivalent) properties:

◦ The transition matrix is a convex combination of transition matrices of deterministic gates.

◦ The transition matrix T is stochastic, i.e., T has non-negative entries and satisfies
∑

j Tij = 1
for each j (each column sum to 1).

◦ The linear operators representing these gates transform probability distributions to probabil-
ity distributions.

◦ The transformation matrices have non-negative entries and preserve the 1-norm.

Examples of probabilistic gates:

◦ All deterministic gates are probabilistic gates.

◦ The fair coin-toss gate:

[
1
2

1
2

1
2

1
2

]
, puts both |0〉 and |1〉 in an equal probability superposition

1
2(|0〉+ |1〉).

3.3 Quantum Computation

The state can be written as a superposition:

|ψ〉 =
∑

s∈{0,1}m
αs |s〉

with “amplitudes” αs ∈ R (or C), such that
∑

s |αs|2 = 1. In one of the problem sets we will show
that complex amplitudes do not buy as any additional power, but the use of complex amplitudes is
sometimes convenient. It is important that, unlike probabilities, amplitudes can be negative reals.

The phases of the computation are:

1. Initialization: The system is put into the basis state |x0m−n〉, where x is an n-bit input.

2. Sequence of quantum gates

3. Read out: Measure |ψ〉. This collapses the superposition into a basis state |s〉. We obtain the
basis state |s〉 with a probability of |αs|2. The output y is extracted from s.

The measurement probabilities are encoded in the amplitudes of the state vector and must sum
to 1: ∑

s

|αs|2 = 1

The square root of this sum is called the “2-norm” of |ψ〉, and is written:

‖ |ψ〉 ‖2 =

√∑
s

|αs|2
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As the outcome of quantum computations is inherently probabilistic, we impose the same cor-
rectness requirement as for probabilistic computations: For every valid input x,

Pr[(x, y) ∈ R] ≥ 1− ε,

where ε is the error bound.

Transition matrices for quantum gates

The transition matrices for quantum gates observe the following (equivalent) properties:

◦ The transition matrices preserve the 2-norm.

◦ Transition matrix T is unitary, i.e., T ∗T = I, where T ∗ is the conjugate transpose of T (also
written as T †).

Examples of quantum gates:

◦ All reversible deterministic gates are quantum gates.

◦ Hadamard gate, H
.
=

[
1√
2

1√
2

1√
2
− 1√

2

]
. This gate can be viewed as a quantum coin-toss gate,

mapping the basis states to equal probability superpositions (yet both superpositions are
distinct due to the negative entry).

Exercise #1

Consider a system with m = 1. Recall the Hadamard gate

H =

[
1√
2

1√
2

1√
2
− 1√

2

]

Determine the output distributions of each of the following processes:

1. Start in state |0〉, apply H, apply H again, and observe.

2. Start in state |0〉, apply H, observe, apply H again, and observe.
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